Global Venture

Pressure Sensitive Labels 101

29

101001010101010101000000101010101000

1020101000000

GLOBAL VENTURE

Contents

Chapter 1

Construction of the Pressure Sensitive Label Paper Making Process Parts of the Label

Paper Making Process - Simplified

Building a Laminate

Start with a release liner

Release Coating

Release Liner

Applying Adhesive

Apply Adhesive to Release Coated Liner

At The Back End

Adhesive

Release Coating

Release Liner

Why is adhesive coated on the liner?

- Minimize heat exposure to Facestock
 Reduces the web path that the facestock has to travel
 Improve consistency of adhesive /
- release bond
- Industry norm to transfer coat adhesive

Top Coat & Primer Coating

At The Front End

Topcoat or Print Receptive Coating

Facestock

Primer or Barrier Coating

Typical Coater

The Finished Pressure Sensitive Label

Top Coat or Print Receptive Coating

Facestock

Primer or Barrier Coating

Adhesive

Release Coating

Release Liner

Chapter 2

Components of the Pressure Sensitive Label Liners Release Systems Facestock Adhesives

Liner Requirements

Smooth

- Fiber & Contaminant Free
- Consistent (Web is flat)

Robust

- Distortion Free (Curl)
- Minimum Elongation
- High Heat Resistance
- High Tear Strength

Functional

- Good Release Coverage & Anchorage
- Economical
- Static Resistance
- Die-Cut Resistance
- Dimensionally Stable
- Consistent Caliper

#1 Factor in Determining Release of Product

Liner Choices

Natural or Brown Kraft (NK or BK) Polycoated Kraft (44 PP or 44 PK)

Super Calendered Kraft (SCK)

Specialty

Glassine

Polyester (PET)

Liner Properties

Properties	SCK Densified Kraft	Glassine	Polycoated Kraft (44 PP)	PET
Surface Smoothness	Fair	Very Good	Good	Excellent
Die Cut Resistance	Fair (Nicks)	Fair	Good	Excellent
Moisture Curl Control	Fair	Poor to Fair	Poor	Excellent
Label Dispensing	Fair	Good	Excellent	Excellent
Elongation	Excellent	Excellent	Excellent	Excellent
Heat Resistance	Very Good	Very Good	Good	Excellent
Silicone Wet-Out	Excellent	Excellent	Fair	Fair
Registration	Excellent	Good	Good	Fair
Static	Good	Good	Good	Fair
Cost	Excellent	Good	Very Good	Fair

Specialty Liner Choices

Machine Finish / Machine Calendered Very "open" sheet – Good Lay Flat **Qualities** Coated 2-Side / White Kraft Good Lay Flat & Printability **Poly Kraft** Lay Flat & Rigidity for Films

Release Systems

Silicone: Most common P/S system

Quilon: Used in over laminating tapes, selfwound applications, and release coatings on the back side of the liner.

Specific Designs (adhesive, release range, end use requirements)

Release Systems

High speed dispensing requires low Initiation and average release

Conformable face stocks such as Films need low release values

> Hand application, multi-step Converting, and piggy back Construction tend to have higher Release values

Choosing Release Systems

Facestock TypesPapers

Laminated Foil / Metalized Papers

Films

Special Composites or Blends

Paper Facestock

- Cellulose Fiber: **Basic Building Block**
- Fillers: Clay, TiO2, Silica, CaCO3
 - Increase Stiffness
 - Affects Porosity and Absorbency
 - Increases Brightness and Opacity
- Surface Sizings/Coatings: Starches, Binders
 - Improves Strength
 - Affects Wettability
 - Affects Holdout and Absorbency
 - Improves Smoothness

Laminated Foil / Metalized Papers Facestock

Paper facestock base

Additional coatings applied to face and back side

FOIL

- Provides additional smoothness for less distortion of foil / metalization
- Thin foil laminated to face or aluminum applied via vaporization in vacuum
- Acrylic top coat to supply an adequate print surface

Film Facestock

Film Facestock Ingredients

Monomer: Basic Building Block typically derived from petroleum
 Strength (Back-Bone)

FILM

- ⊠ Basic Properties of Film
- Filler: Clay, TiO₂, Silica, CaCO₃
 - Increase Stiffness, Brittleness, and Opacity
 - ☑ Affects Porosity, Gloss, and Absorbency
- Coatings, Co extrusion Layers (Topcoats, Primers, Skin Layers, Tie Layers)
 - ☑ Increase Wettability (Surface Energy)
 - ⊠ Improves Smoothness

Special Composites or Blends Facestock

Saturated Papers

Saturated with latex to improve strength and moisture resistance

SPECIAL

- Synthetic Papers
 - Films that print or function like paper with film durability
- Multi-film/paper laminates
 - Paper/film/paper provides tear-resistance

Pressure Sensitive Adhesives

Basic Building-Blocks Types Available **Rubber / Acrylic** How They Get Coated Solvent / Hot Melt / Emulsion How They Function Permanent / Removable / Application

Basic Adhesive Components

Practical Aspect of Adhesives

Polymers (Rubber or Acrylic) Additives Antioxidants (Shelf Life) Plasticizers (Wet Out & Flexibility) Surfactants (Coatability) Tackifiers (Bonding Strength) Dispersing Agents (gets it all together) The oil & solvents

Backbone Alternatives for Adhesives

Natural Rubbers Synthetic Rubbers Styrene-Butadiene Styrene-Isoprene Acrylic Polymers **Ethylhexyl Acrylate Butyl Acrylate**

Rubber Adhesives Pro's / Con's

Rubber Adhesives

STRENGTHS

- Economical
- Good Availability
- Good Quick Stick
- Good Moisture Resistance
- Well Established

WEAKNESSES

- Amber in Color
- Degrades When Exposed to UV Light
- Shorter Shelf Life
- Poor Solvent Resistance
- Narrower
 Temperature Range

Acrylic Adhesives Pro's / Con's

Acrylic Adhesives

STRENGTHS

- Good UV Resistance
- Broad Temperature Performance
- Good Stripping Qualities
- Clear in Color
- Longer Shelf Life

WEAKNESSES

- Generally More
 Expensive than RB
- May Require Tackifiers
- May Turn White When Exposed to Moisture

Adhesive Properties *

PROPERTIES	Rubber Based	Acrylic	
UV Stability	Poor – Fair	Good - Excellent	
Aging Stability	Fair - Good	Good - Excellent	
Die Cutting	Fair - Good	Good - Excellent	
Wide Web Converting	Fair - Good	Good - Excellent	
Initial Adhesion	Medium - High	Low - Medium	
Ult. Adhesion	Medium	High	
Quick-Tack	Medium - High	Low - Medium	
Cohesive Strength	Fair - Good	Good - Excellent	
Clarity	Poor - Fair	Good - Excellent	

Please note these are generalities, there is an extremely wide ranges of performance in rubber and acrylic adhesives.

GLOBAL VENTURE

Adhesive Usage

Acrylic Vs. Rubber

ACRYLIC 69%

> RUBBER 31%

Coating Method for Adhesives

Solvent Adhesive Advantages / Disadvantages

SOLVENT

ADVANTAGES

- Allows Crosslinking for Strength
- High Temperature Resistance
- Good Water Resistance
- Well Established

DISADVANTAGES

- EPA Regulations
- Residual Solvents
- Potential Poor Solvent Resistance
- Rubber-Based are Amber Colored
- Potentially Dangerous
- High Cost

Emulsion Adhesive Advantages / Disadvantages

EMULSION

ADVANTAGES

- Few EPA Concerns
- Excellent Converting
- Broad Temperature Range
- Good Clarity
- Many Formulations

DISADVANTAGES

- Initially Less Aggressive
- Limited Water Resistance
- Tackifiers needed for Quick Tack
- Moderate Cost

Hot Melt Adhesive Advantages / Disadvantages

HOT MELT

ADVANTAGES

- Few EPA Concerns
- High Quick Tack
- Economical
- Normally Good Adhesion to Most Plastics

DISADVANTAGES

- Poor Temperature Resistance
- Limited Adhesive Performance Range
- Fair Converting
- Amber Color if Rubber-Based

Coating Method Comparisons

	SOLVENT	EMULSION	HOT MELT
FORMULATING LATITUDE	EXCELLENT	GOOD	LIMITED
RAW MATERIAL COST	HIGH	MODERATE	LOW
PROCESS CONTROL	EXCELLENT	FAIR	GOOD
RAW LABEL CONVERTING	GOOD	GOOD	FAIR – GOOD
ENVIRONMENTAL IMAPCT	POOR	GOOD	GOOD

Basic Adhesive Performance

- Intended for Life-Cycle of end-use product. The adhesive is characterized by a relatively high ultimate adhesion to a wide variety of surfaces.
- Open Time: How long before it becomes permanent.
- Repositionability: How long you can remove and re-apply.
- Tamper Evident: Either facestock distorts or leaves adhesive residue (evidence).

PERMANENT

ADHESIVE

REMOVABLE

- Intended for applications requiring removal of the label intact.
- No residue or ghosting when removed.
- Short expected life-cycle.
- The adhesive is characterized by low ultimate adhesion.

Adhesive Categories

General Purpose & Cold Temperature Adhesives Applications

Designed for Ordinary Applications

Good Converting

"House" Adhesive

Balances Price Vs. Performance

GENERAL PURPOSE

Applications Below 40° F

Formulated for Adhesion at Low Temperatures

Maintain Tack at Low Temperatures

Tends to soften with Temperature rise

COLD TEMPERATURE (FREEZER)

All Temperature & High Tack Adhesives Applications

Designed to Cover Normal to Freezer Applications

Descent Converting

Sometimes the "House" Adhesive

Higher Price for Wider Performance

ALL TEMPERATURE

HIGH TACK

Soft Adhesive / Easy Flowing

Heavy Coat Weight

Ooze Converting / Shipping / Storage Issues

Pharmaceutical & Specialty Adhesives Applications

FDA Requirements

Moisture / Chemical Resistance

Sterilization (Gamma / Solvent / Autoclave)

Aggressive (High Mandrel Strength)

PHARMACEUTICAL

Ultra Removable

Coupon Base

Wash-Away

SPECIALTY

Chapter 3

Selecting Pressure Sensitive Stock Considerations Label Converters Criteria

Selecting a Pressure Sensitive Stock

What Type of Pressure Sensitive Laminate Do I Need?

Printing Imaging Needs

Facestock Environments Adhesive Performance Liner Selection Release System Design

Economics

Selecting a Pressure Sensitive Stock

Primary Consideration Secondary Consideration Tertiary Consideration Face
Liner
Adhesive

Note: Different Markets have Different Drivers

EDP

VIP

Primary Consideration Secondary Consideration Tertiary Consideration Face
Adhesive
Liner

GENERAL LABELING Primary Consideration Secondary Consideration Tertiary Consideration Liner
Adhesive
Face

Label Converters Criteria

Finding the Sweet Spot

ENTURE/

Chapter 4

The Right Questions

- Describe the Application
- Is this a new application?
- Any previous problems with the application?
- Have samples of past or current labels?
- What does final label need to look like?
- What is the substrate material, texture, shape?
- What is the expected label lifetime?
- Does the label need to be permanent or removable ?
- What are the application conditions?
- How is the label applied?
- How will the labels be stored and how long?
- What should they cost ?
- Any regulatory or OEM specs that apply?
- What are the typical order sizes and estimated yearly volume?
- What is inside the package to be labeled (possible migration issues)? How will the labels be supplied - rolls
 - or sheets?
 - Will the end-user be doing any printing - TT, Laser printer, etc.?
 - Any demanding end-use conditions or operations sheet fed printer, auto insert, closure label, etc.?

Chapter 5

GLOBAL VENTURE

Materials & Die Order

 Global Venture has an Extensive in-house inventory of Dies and Pressure Sensitive Stock

If Stock is unavailable, Special Material and Dies are ordered

What is a Die?

- A cutting tool which is cylindrical in nature. Sharpened steel blades are bent and formed around the outer surface of the cylinder to the pattern to be cut.
- Blades are held in position with high density plywood.
- Blade thickness typically runs between .056 and .112 inches.
 - Fold lines, scores, and perf cuts can all be made.

Submitting Artwork

 State-of-the-art, graphic software is utilized to ensure labels print exactly as requested.
 Utilize one of our many die layouts to design your artwork

Preparing your Artwork

Bleed

Determined by adding 0.125" to the width and length dimensions (2" x 3" label would need to have the art board set at 2.125" x 3.125"). This is important because there can be slight shifts in alignment when the labels are die cut. Shifts of up to 1/16" may occur and are within acceptable industry standards.

Borders

Borders bleeding off of a label need to be at least 0.1875" in thickness and meet the bleed edge.

Preparing your Artwork

Fonts

- Submitting a file that is not flattened (files other than jpeg, tiff, bmp), change all text to outlines or embed the fonts into the file.
 - The minimum printable font size for black text on a light background is 5pt and for color is 7 pt.

File Format

- Preferred format is PDF.
 - Use the "Press Quality" preset, convert your text to outlines, make sure there is no color conversion, and make sure that there is no down sampling of the images (unless above 800dpi).
 - Formats we accept are: .eps, .ps, .ai, .psd, .jpg, .tiff, & .pdf

Preparing your Artwork

Colors

- Assign Pantone or Process color(s) to your artwork.
 - Ensures accurate representation of your logo/art when matched at the press.
 - Please note: The color you see on your computer screen isn't necessarily what color will print because monitors can adjust the color contrasts

Resolution

 Minimum resolution is 300 dpi & Maximum resolution is 800 dpi. We encourage our customers to submit files that have a higher resolution. This makes dramatic improvements in quality especially when there is text on the label.

pixels	
pixels	6.0
	Ca
pixels	Au
inches 🗦 –	1
inches 🗦 –	8
pixels/inch 😫 -	
pixels/inch 후 –	
	inches -

Communication is vital to achieve Success in Final Proof of Label

Phase 4

Designing Plates Process

Laser engraved Photopolymer plates

- Direct laser engraving of Flexo Photopolymer plates (which fit over a cylinder).
- Utilized in wide array of presses, including narrow and wide (up to 61.5 inches wide), and mid-web flexo presses (up to 20-24 inches wide).
- Fully Digital Process Filmless.
- No integral ablation mask.
- High-powered carbon dioxide laser head burns away, or ablates, unwanted material. The aim is to form sharp, relief images with steep, smooth edges to give a high standard of process color reproduction.
- A short water wash and dry cycle follows.

Phase 5

Production

- Technologically advanced flexographic presses—the most costeffective method of manufacturing and printing high-quality, pressuresensitive labels.
- Flexographically designs in up to ten colors
- Exceptional photographic quality, using water-based, UV flexo, or a combination of UV flexo and UV rotary screen printing.
- Presses accommodate all of standard and specialty label materials, including papers, films, foils, and vinyl's.

How does the Flexographic Press Work?

- Flexo-Plate Creating a positive mirrored master of the required image as a 3D Relief in a rubber or polymer material
- Measured amount of ink is deposited upon the surface of the printing plate (or printing cylinder) using an engraved anilox roll whose texture holds a specific amount of ink.
- Print surface then rotates, contacting the print material which transfers the ink.
- Large Dryers are utilized to dry the ink onto the paper
- Perforation, Slits, etc...stage
- Relief is removed, outcome is the Matrix and Final Label
 Final Labels are rolled for rewinding

Slitting & Rewinding

Purpose:

- Rewinding: Customer requests for direction of labels for there manufacturing plants.
- Slitting: Utilizing sharp blades to cut larger quantities of rolled labels to smaller rolled quantity rolled labels.

Variations:

- Rewind Direction
- Quantity of Labels
- Core size

Rewinding Directions & Standard Core Sizes

- Standard Label Core Inside Diameters:
 - 944", .995", 1.015", 1.025", 1.075", 1.122", 1.500", 1.820", 2.000", 2.015", 2.285", 2.535", 2.750", 3.015", 3.025", 3.032", 3.040" & 6.035"

Lengths range from .25" to 12"

Phase 6

Order Shipped

Excellent Vendor relations, enabling cost-effective shipping methods

29

1010510001010 L010 L000000101 0 11101

12/110101001000

GLOBAL VENTURE